Automated Resistor Classification

نویسندگان

  • Pascal Niklaus
  • Gian Ulli
  • Tobias Langner
  • Jochen Seidel
چکیده

In this group thesis, we develop an algorithm that allows the automated classification of resistors using image recognition. The algorithm is implemented in an Android app and therefore usable on every Android smartphone. The problem is split into parts and the result is obtained step by step beginning with the localization of the resistor in the captured image and cropping the image such that only the resistor’s body remains. In the following analysis, the color rings are separated from the background and finally assigned a specific color. In the end, it is possible to determine the resistance of the resistor. Our evaluation of the algorithm shows that the resistor localization works with nearly every image and also under different conditions. The detection of the color rings on the body of the resistor also performs well on most of the images. However, our approach to the color assignment turned out to be unreliable. The task is quite difficult because every camera has different saturation and brightness settings. Also, external conditions like shadows and the background have a significant impact on the colors in an image.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

High-speed automated atomic absorption spectrophotometry.

We describe an integrated automated system for the atomic absorption spectrophotometer. The system makes use of a light-dependent resistor to detect the presence of a marker ion which is present along with the sample ion in the flame. An electronic circuit has been developed which enables the marker ion to trigger the read signal of the spectrophotometer. The system has been tested by determini...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems.  In this study, we d...

متن کامل

An automated approach to analysis and classification of Crypto-ransomwares’ family

There is no doubt that malicious programs are one of the permanent threats to computer systems. Malicious programs distract the normal process of computer systems to apply their roguish purposes. Meanwhile, there is also a type of malware known as the ransomware that limits victims to access their computer system either by encrypting the victimchr('39')s files or by locking the system. Despite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015